## MATH 301 INTRODUCTION TO PROOFS

Sina Hazratpour<br>Johns Hopkins University<br>Fall 2021

## Relevant sections of the textbook

- Chapter 4


## Overview

## (1) Recursion

(2) Applications of recursion theorem
(3) Recursion in Lean

Recall that in the last lecture, we defined the set of natural numbers $\mathbb{N}$ to be a set generated by the by the number 0 and the successor function succ: $\mathbb{N} \rightarrow \mathbb{N}$.
This means that the only way to construct a natural number is to start with 0 and apply the successor function finitely many times. Therefore, natural numbers are

$$
0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \ldots
$$

We also postulated the principle of induction on natural numbers.

## Predicates and subsets

Recall that we can think of a predicate $P$ on natural numbers as a function $P: \mathbb{N} \rightarrow \mathbf{2}$ where the set $\mathbf{2}$ consists of truth values $\perp$ and $T$. Note that the set $\mathbb{N} \rightarrow \mathbf{2}$ is in bijection with $\mathcal{P}(\mathbb{N})$. In one way, we construct a function

$$
\eta:(\mathbb{N} \rightarrow \mathbf{2}) \rightarrow \mathcal{P}(\mathbb{N})
$$

whose value at a predicate $P$ is the set consisting of all $n \in \mathbb{N}$ such that $P(n)$ is true, i.e.

$$
\eta(P)==_{\operatorname{def}}\{n \in \mathbb{N} \mid P(n)\}
$$

In the other direction, we take a subset $S$ of $\mathbb{N}$ to the characteristic function $\chi_{s}: \mathbb{N} \rightarrow \mathbf{2}$.

## The principle of induction

The principle of induction says that for any property $P: \mathbb{N} \rightarrow \mathbf{2}$ of natural numbers, if
(1) $P(0)$ holds, and
(2) whenever $P(n)$ holds then $P(n+1)$ holds, we have that $P$ holds of every natural number.

The principle of induction reformulated

Let $S \subseteq \mathbb{N}$ be any set of natural numbers that contains 0 and is closed under the successor operation. Then $S=\mathbb{N}$.

## Proofs vs computation

We saw that the principle of induction is a very powerful tool in proving universally quantified statements about natural numbers.

## Example

- For any finite set $S$, if $S$ has $n$ elements, then there are $2^{n}$ subsets of $S$.
- For every $n \in \mathbb{N}$, we have $0^{2}+1^{2}+2^{2}+\ldots n^{2}=\frac{1}{6} n(1+n)(1+2 n)$.

But, we also need to compute with natural numbers. At the very least, we should be able to define the arithmetic operations,$+ \times$, etc.

That is why we need another principle to help us with computation of natural numbers. This is the so-called principle of recursion which in fact can be proved from the principle of induction!

## Recursion theorem

## Theorem

Let $A$ be a set. For all $a \in A$ and all $g: \mathbb{N} \times A \rightarrow A$, there is a unique function $f: \mathbb{N} \rightarrow A$ such that
(1) $f(0)=a$
(2) $f(\operatorname{succ}(n))=g(n, f(n))$ for all $n \in \mathbb{N}$.

## Proof.

Theorem 4.1.2 (Recursion theorem) Page 145.
Since for every function $g$ such function $f$ is uniquely determined, we write rec ( $g$ ) for it.
We have

$$
\begin{aligned}
& \operatorname{rec}(g)(0)=a \\
& \operatorname{rec}(g)(1)=\operatorname{rec}(g)(\operatorname{succ}(0))=g(0, \operatorname{rec}(g)(0))=g(0, a) \\
& \operatorname{rec}(g)(2)=\operatorname{rec}(g)(\operatorname{succ}(1))=g(1, \operatorname{rec}(g)(1))=g(1, g(0, a))
\end{aligned}
$$

## Recursion, practically!

In order to specify a function $f: \mathbb{N} \rightarrow A$, it suffices to define $f(0)$ and, for given $n \in \mathbb{N}$, assume that $f(n)$ has been defined, and define $f(\operatorname{succ}(n))$ in terms of $n$ and $f(n)$.

## Overview

## (1) Recursion

(2) Applications of recursion theorem
(3) Recursion in Lean

## Addition by recursion

We define additions of natural numbers as a function $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$.
This means for every $m \in \mathbb{N}$, we have to define a function $m+(-): \mathbb{N} \rightarrow \mathbb{N}$.
We define the latter by recursion: consider the function $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ given by the assignment $g(i, j)=\operatorname{succ}(j)$.
Choose $a=m$ in the recursion theorem. Therefore,

$$
\begin{aligned}
& \operatorname{rec}(g)(0)=m \\
& \operatorname{rec}(g)(1)=\operatorname{rec}(g)(\operatorname{succ}(0))=g(0, \operatorname{rec}(g)(0))=g(0, m)=\operatorname{succ}(m) \\
& \operatorname{rec}(g)(2)=\operatorname{rec}(g)(\operatorname{succ}(1))=g(1, \operatorname{rec}(g)(1))=\operatorname{succ}(\operatorname{succ}(m)) \\
& \operatorname{rec}(g)(\operatorname{succ}(n))=g(n, \operatorname{rec}(g)(n))
\end{aligned}
$$

## Addition by recursion

We now define $m+(-): \mathbb{N} \rightarrow \mathbb{N}$ to be $\operatorname{rec}(g): \mathbb{N} \rightarrow \mathbb{N}$.

$$
\begin{align*}
m+0 & =m  \tag{1}\\
m+\operatorname{succ}(n) & =\operatorname{succ}(m+n) \tag{2}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
m+1=m+\operatorname{succ}(0)=\operatorname{succ}(m+0)=\operatorname{succ}(m) \tag{3}
\end{equation*}
$$

In particular,

$$
1+1=\operatorname{succ}(1)=\operatorname{succ}(\operatorname{succ}(0))=2
$$

## Combining recursion and induction

## Proposition

For every natural numbers $m$, we have $m+1=1+m$.

## Proof.

We use induction on $m$ to prove that $m+1=1+m$ for all $m \in \mathbb{N}$.
When $m=0$, by equations (1) and (2), we have
$1+0=1=\operatorname{succ}(0)=\operatorname{succ}(0+0)=0+\operatorname{succ}(0)=0+1$.
Suppose that $1+m=m+1$. We want to show that $1+\operatorname{succ}(m)=\operatorname{succ}(m)+1$. But, by definition of function $m+(-)$ for $m=1$,

$$
1+\operatorname{succ}(m)=\operatorname{succ}(1+m)=\operatorname{succ}(m+1)=\operatorname{succ}(\operatorname{succ}(m))=\operatorname{succ}(m)+1,
$$

where the last two equations above follow from equation (3).

## Proposition (commutativity of addition of natural numbers)

For every natural numbers $m$ and $n$, we have $m+n=n+m$.
Proof left to the reader.
Hint: We prove, by induction, the following lemmas first:
Lemma (neutrality of 0 for + )
For all natural numbers $k$ we have $k+0=0+k$.
Lemma (associativity of addition)
For all natural numbers $k+(m+n)=(k+m)+n$.

## Proof.

We prove the commutativity of addition by fixing $m$ and inducting on $n$.
If $n=0$, by the neutrality of 0 (lemma above) we have that $m+0=0+m$, and we are done. Suppose that $m+n=n+m$. We want to prove that $m+\operatorname{succ}(n)=\operatorname{succ}(n)+m$.

$$
\begin{array}{rll}
m+\operatorname{succ}(n) & =m+(n+1) & \\
& \text { by eq (3) } \\
& =(m+n)+1 & \\
\text { by associativity of addition } \\
& =(n+m)+1 & \\
\text { by inductive hypothesis } \\
& =n+(m+1) & \\
\text { by associativity of addition } \\
& =n+(1+m) & \\
\text { by the last proposition } \\
& =(n+1)+m & \\
\text { by associativity of addition } \\
& =\operatorname{succ}(n)+m & \text { by eq (2) }
\end{array}
$$

## Overview

(1) Recursion
(2) Applications of recursion theorem
(3) Recursion in Lean

