MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour Johns Hopkins University Fall 2021 - Recursion

Relevant sections of the textbook

• Chapter 4

Overview

- 1 Recursion
- 2 Applications of recursion theorem
- 3 Recursion in Lean

Recall that in the last lecture, we defined the set of natural numbers $\mathbb N$ to be a set *generated* by the by the number 0 and the successor function succ: $\mathbb N \to \mathbb N$.

This means that the only way to construct a natural number is to start with 0 and apply the successor function finitely many times. Therefore, natural numbers are

0, succ(0), succ(succ(0)), ...

We also postulated the principle of induction on natural numbers.

Predicates and subsets

Recall that we can think of a predicate P on natural numbers as a function $P \colon \mathbb{N} \to \mathbf{2}$ where the set $\mathbf{2}$ consists of truth values \bot and \top .

Note that the set $\mathbb{N} \to \mathbf{2}$ is in bijection with $\mathcal{P}(\mathbb{N})$.

In one way, we construct a function

$$\eta: (\mathbb{N} \to \mathbf{2}) \to \mathcal{P}(\mathbb{N})$$

whose value at a predicate P is the set consisting of all $n \in \mathbb{N}$ such that P(n) is true, i.e.

$$\eta(P) =_{\mathsf{def}} \{ n \in \mathbb{N} \mid P(n) \}$$

In the other direction, we take a subset S of \mathbb{N} to the characteristic function $\chi_S \colon \mathbb{N} \to \mathbf{2}$.

The principle of induction

The principle of induction says that for any property $P: \mathbb{N} \to \mathbf{2}$ of natural numbers, if

- \bullet P(0) holds, and
- 2 whenever P(n) holds then P(n + 1) holds,

we have that *P* holds of every natural number.

The principle of induction reformulated

Let $S \subseteq \mathbb{N}$ be any set of natural numbers that contains 0 and is closed under the successor operation. Then $S = \mathbb{N}$.

Proofs vs computation

We saw that the principle of induction is a very powerful tool in proving universally quantified statements about natural numbers.

Example

- For any finite set S, if S has n elements, then there are 2ⁿ subsets of S.
- For every $n \in \mathbb{N}$, we have $0^2 + 1^2 + 2^2 + ... n^2 = \frac{1}{6} n(1 + n)(1 + 2n)$.

But, we also need to compute with natural numbers. At the very least, we should be able to define the arithmetic operations +, \times , etc.

That is why we need another principle to help us with computation of natural numbers. This is the so-called principle of recursion which in fact can be proved from the principle of induction!

Recursion theorem

Theorem

Let A be a set. For all $a \in A$ and all $g : \mathbb{N} \times A \to A$, there is a unique function $f : \mathbb{N} \to A$ such that

- **1** f(0) = a
- 2 $f(\operatorname{succ}(n)) = g(n, f(n))$ for all $n \in \mathbb{N}$.

Proof.

Theorem 4.1.2 (Recursion theorem) Page 145.

Since for every function g such function f is uniquely determined, we write rec(g) for it.

We have

```
rec(g)(0) = a

rec(g)(1) = rec(g)(succ(0)) = g(0, rec(g)(0)) = g(0, a)

rec(g)(2) = rec(g)(succ(1)) = g(1, rec(g)(1)) = g(1, g(0, a))
```

Recursion, practically!

In order to specify a function $f: \mathbb{N} \to A$, it suffices to define f(0) and, for given $n \in \mathbb{N}$, assume that f(n) has been defined, and define $f(\operatorname{succ}(n))$ in terms of n and f(n).

Overview

- 1 Recursion
- 2 Applications of recursion theorem
- 3 Recursion in Lean

Addition by recursion

We define additions of natural numbers as a function $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

This means for every $m \in \mathbb{N}$, we have to define a function $m + (-) : \mathbb{N} \to \mathbb{N}$.

We define the latter by recursion: consider the function $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by the assignment g(i,j) = succ(j).

Choose a = m in the recursion theorem. Therefore,

```
rec(g)(0) = m
rec(g)(1) = rec(g)(succ(0)) = g(0, rec(g)(0)) = g(0, m) = succ(m)
rec(g)(2) = rec(g)(succ(1)) = g(1, rec(g)(1)) = succ(succ(m))
rec(g)(succ(n)) = g(n, rec(g)(n))
```

Addition by recursion

We now define $m + (-) : \mathbb{N} \to \mathbb{N}$ to be $rec(g) : \mathbb{N} \to \mathbb{N}$.

$$m+0=m (1)$$

$$m + \operatorname{succ}(n) = \operatorname{succ}(m+n)$$
 (2)

Therefore,

$$m + 1 = m + succ(0) = succ(m + 0) = succ(m)$$
 (3)

In particular,

$$1 + 1 = \operatorname{succ}(1) = \operatorname{succ}(\operatorname{succ}(0)) = 2$$

Combining recursion and induction

Proposition

For every natural numbers m, we have m + 1 = 1 + m.

Proof.

We use induction on m to prove that m+1=1+m for all $m \in \mathbb{N}$.

When m = 0, by equations (1) and (2), we have

$$1 + 0 = 1 = succ(0) = succ(0 + 0) = 0 + succ(0) = 0 + 1.$$

Suppose that 1 + m = m + 1. We want to show that 1 + succ(m) = succ(m) + 1.

But, by definition of function m + (-) for m = 1,

$$1 + \operatorname{succ}(m) = \operatorname{succ}(1 + m) = \operatorname{succ}(m + 1) = \operatorname{succ}(\operatorname{succ}(m)) = \operatorname{succ}(m) + 1$$

where the last two equations above follow from equation (3).

Proposition (commutativity of addition of natural numbers)

For every natural numbers m and n, we have m + n = n + m.

Proof left to the reader.

Hint: We prove, by induction, the following lemmas first:

Lemma (neutrality of 0 for +)

For all natural numbers k we have k + 0 = 0 + k.

Lemma (associativity of addition)

For all natural numbers k + (m + n) = (k + m) + n.

Proof.

We prove the commutativity of addition by fixing m and inducting on n. If n = 0, by the neutrality of 0 (lemma above) we have that m + 0 = 0 + m, and we are done. Suppose that m + n = n + m. We want to prove that $m + \operatorname{succ}(n) = \operatorname{succ}(n) + m$.

$$m + \operatorname{SUCC}(n) = m + (n + 1)$$
 by eq (3)
 $= (m + n) + 1$ by associativity of addition
 $= (n + m) + 1$ by inductive hypothesis
 $= n + (m + 1)$ by associativity of addition
 $= n + (1 + m)$ by the last proposition
 $= (n + 1) + m$ by associativity of addition
 $= \operatorname{SUCC}(n) + m$ by eq (2)

Overview

- 1 Recursion
- 2 Applications of recursion theorem
- 3 Recursion in Lean